Laplace Eigenfunctions and Damped Wave Equation on Product Manifolds
نویسندگان
چکیده
منابع مشابه
Geodesics and Nodal Sets of Laplace Eigenfunctions on Hyperbolic Manifolds
Let X be a manifold equipped with a complete Riemannian metric of constant negative curvature and finite volume. We demonstrate the finiteness of the collection of totally geodesic immersed hypersurfaces in X that lie in the zero-level set of an arbitrary Laplace eigenfunction. For surfaces, we show that the number can be bounded just in terms of the area of the surface. We also provide constru...
متن کاملHeat Kernel Smoothing of Anatomical Manifolds via Laplace-Beltrami Eigenfunctions
We present a novel surface smoothing framework using the Laplace-Beltrami eigenfunctions. The Green’s function of an isotropic diffusion equation on a manifold is analytically represented using the eigenfunctions of the Laplace-Beltraimi operator. The Green’s function is then used in explicitly constructing heat kernel smoothing as a series expansion of the eigenfunctions. Unlike many previous ...
متن کاملInertial manifolds of damped semilinear wave equations
© AFCET, 1989, tous droits réservés. L’accès aux archives de la revue « Modélisation mathématique et analyse numérique » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de cop...
متن کاملStochastic inertial manifolds for damped wave equations ∗
In this paper, stochastic inertial manifold for damped wave equations subjected to additive white noise is constructed by the Lyapunov-Perron method. It is proved that when the intensity of noise tends to zero the stochastic inertial manifold converges to its deterministic counterpart almost surely.
متن کاملEigenfrequencies for Damped Wave Equations on Zoll Manifolds
The eigenfrequencies associated to a damped wave equation are known to belong to a band parallel to the real axis. Under the assumption of periodicity of the geodesic flow we study the asymptotic distribution of the eigenfrequencies in the band. We show that the set of eigenfrequencies exhibits a cluster structure determined by the Morse index of the closed geodesics and the damping coefficient...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Research eXpress
سال: 2015
ISSN: 1687-1200,1687-1197
DOI: 10.1093/amrx/abv005